Mon, 19 Aug 2024 05:10:12 +0000

Weil die Ableitung einer holomorphen Funktion wieder holomorph ist, können nur holomorphe Funktionen Stammfunktionen besitzen. Holomorphie ist lokal bereits hinreichend: Ist ein Gebiet, eine holomorphe Funktion und, dann gibt es eine Umgebung von in und eine Stammfunktion von, d. h. für alle. Die Frage der Existenz von Stammfunktionen auf ganz hängt mit topologischen Eigenschaften von zusammen. Für eine holomorphe Funktion mit offen und zusammenhängend sind folgende Aussagen äquivalent: Die Funktion hat eine Stammfunktion auf ganz, das heißt, ist holomorph und ist die komplexe Ableitung von. Wegintegrale über hängen nur von den Endpunkten des Weges ab. Wegintegrale über geschlossene Wege (Anfangspunkt = Endpunkt) liefern als Ergebnis immer 0. Für ein Gebiet sind äquivalent: Jede holomorphe Funktion hat eine Stammfunktion. Jeder stetige, geschlossene Weg ist nullhomotop. Jeder stetige, geschlossene Weg ist nullhomolog. Stammfunktion von 1 x 2 inch. ist einfach zusammenhängend. Siehe auch [ Bearbeiten | Quelltext bearbeiten] Tabelle von Ableitungs- und Stammfunktionen Faltung, für eine Methode zur Interpretation und zum Finden von Stammfunktionen.

  1. Stammfunktion von 1 x 22

Stammfunktion Von 1 X 22

Cookies und Datenschutz Diese Website verwendet Cookies, um sicherzustellen, dass du das beste Erlebnis auf unserer Website erhältst. Mehr Informationen

Stammfunktion Definition Ausgangspunkt: man hat eine abgeleitete Funktion vor sich und sucht nun eine Funktion ( Stammfunktion), welche abgeleitet die vorliegende Funktion ergibt. Dabei bezeichnet man die abgeleitete Funktion meist mit f(x) (was etwas verwirrend ist, da Ableitungen i. d. R. mit f '(x) symbolisiert werden) und die Stammfunktion mit F(x). Beispiel Man bekommt die abgeleitete Funktion f (x) = x 2 vorgelegt. Aus den Ableitungsregeln für Potenzfunktionen weiß man, dass F(x) = 1/3 x 3 abgeleitet x 2 ergibt (die Ableitung von x n ist nx n-1, also bei x 3 wäre es 3x 2 und da man hier nicht 3x 2, sondern x 2 als Vorgabe hat, muss man mit 1/3 multiplizieren). Aber auch F(x) = 1/3 x 3 + 1 oder F(x) = 1/3 x 3 + 17 würde abgeleitet x 2 ergeben (da die Konstante beim Ableiten wegfällt). Man schreibt deshalb (mit C für Constant: engl. Stammfunktion, Aufleitung, Integrationskonstante | Mathematik - Welt der BWL. für Konstante bzw. Integrationskonstante) F(x) = 1/3 x 3 + C und das sind dann Stammfunktionen bzw. Integrale der Funktion f(x) = x 2. Damit kann man dann rechnen, z.